
A modern mutt setup

A modern Mutt Setup

https://webgefrickel.de/blog/a-modern-mutt-setup

As the time of writing I am using a Debian 10 system, you maybe have to adopt some settings
depending on your Mailprovider and/or Distribution. I wrote to the the Original Autor for approval,
he used MacOS and I adopted it to fit with latest stable version of Debian.

https://git.tinfoil-hat.net/?p=dotfiles.git;a=summary

These are the main component's you'd need to install for a functional mailclient.

But I am going to install a few other tools that provide additional features, like calendar, contacts,
downloading attacments, search and display content:

After that we create the neccessary folders:

Note: *I had to store my neomutt config files in ~/.config/neomutt in order to make neomutt
recognze them. It wasn't enough to put them in ~/.mutt*

A modern mutt setup

Original seen and Highly inspired by:

You can find the newest Dotfiles here

install dependencies

sudo apt-get install neomutt msmtp isync maildir-utils vim

sudo apt-get install vdirsyncer khard khal ripmime urlscan gnupg gpg-agent

mkdir ~/Contacts

mkdir ~/Mail

mkdir ~/Mail/mail

mkdir ~/Mail/private

https://webgefrickel.de/blog/a-modern-mutt-setup
https://git.tinfoil-hat.net/?p=dotfiles.git;a=summary

To Store the Password of your email addresses, execute after you typed your Password, exit with
ctrl+d

See this comment. Also the GPG Agent will only cache one Key at the time. so when you want to
send an email with the wrong key after using one other, the agent will not be able to use the right
key.

Then we create the ~/.mbsyncrc and edit the Options, here's an Example

Store your Credentials

gpg --encrypt -o ~/.mutt/msmtp-mail.gpg -r mail@tinfoil-hat.net

gpg --encrypt -o ~/.mutt/msmtp-private.gpg -r mail@tinfoil-hat.net

Configure isync

#################################

######## Account mail ###########

#################################

IMAPAccount mail

Host mx.nchristian.net

port 143

User mail@tinfoil-hat.net

PassCmd "echo ${PASSWORD:-$(gpg --no-tty -qd ~/.config/neomutt/msmtp-mail.gpg)}"

SSLType STARTTLS

SSLVersions TLSv1.2

ca-file location for Debian 10

CertificateFile /etc/ssl/certs/ca-certificates.crt

Remote storage

IMAPStore mail-remote

Account mail

Local storage

MaildirStore mail-local

Path ~/Mail/mail/

Inbox ~/Mail/mail/INBOX

Channel mail-inbox

Master :mail-remote:"INBOX"

Slave :mail-local:INBOX

Create Both

Expunge Both

Channel mail-drafts

Master :mail-remote:"Drafts"

Slave :mail-local:Drafts

Create Both

Expunge Both

Channel mail-sent

Master :mail-remote:"Sent"

Slave :mail-local:sent

Create Both

Expunge Both

Channel mail-trash

Master :mail-remote:"Trash"

Slave :mail-local:Trash

Create Both

Expunge Both

Channel mail-junk

Master :mail-remote:"Junk"

Slave :mail-local:Junk

Create Both

Expunge Both

Group mail

Channel mail-inbox

Channel mail-drafts

Channel mail-sent

Channel mail-trash

Channel mail-junk

#################################

######## Account private ########

#################################

IMAPAccount private

Host mx.nchristian.net

port 143

User @nchristian.net

PassCmd "echo ${PASSWORD:-$(gpg --no-tty -qd ~/.config/neomutt/msmtp-private.gpg)}"

SSLType STARTTLS

SSLVersions TLSv1.2

ca-file location for Debian 10

CertificateFile /etc/ssl/certs/ca-certificates.crt

Remote storage

IMAPStore private-remote

Account private

Local storage

MaildirStore private-local

Path ~/Mail/private/

Inbox ~/Mail/private/INBOX

Channel private-inbox

Master :private-remote:"INBOX"

Slave :private-local:INBOX

Create Both

Expunge Both

Channel private-drafts

Master :private-remote:"Drafts"

Slave :private-local:Drafts

Create Both

Expunge Both

Channel private-sent

Master :private-remote:"Sent"

Slave :private-local:Sent

Create Both

Expunge Both

In the first block we define the new account, give it an alias (»mail« from now on) and provide all
credentials we need (host, user and password) and tell msmtp to only connect via a secure
connection. The important bits here are the PassCmd and CertificateFile lines:

The PassCmd uses a small shell command to retrieve your password from the systems keychain via
the command gpg. While it is called gpg, it is way better than either typing out your password
every time or storing it as plain text.

To add your password we executed the command:

which get's read by the line: PassCmd "echo ${PASSWORD:-$(gpg --no-tty -qd ~/.mutt/msmtp-
accountname.gpg)}" . This way you use your GPG password for all your mail accounts and don't have
to memorize them all, or do like me use keepass.

The certificates-file contains all certificates from all the major authorities that mbsync needs for
SSL communication. You already have those in your keychain, but mbsync can't just access your
keychain, so you have to save those certificates in a single file and point mbsync to it.

Channel private-trash

Master :private-remote:"Trash"

Slave :private-local:Trash

Create Both

Expunge Both

Channel private-junk

Master :private-remote:"Junk"

Slave :private-local:Junk

Create Both

Expunge Both

Group private

Channel private-inbox

Channel private-drafts

Channel private-sent

Channel private-trash

Channel private-junk

Let's look at this in detail:

gpg --encrypt -o ~/.mutt/msmtp-accountname.gpg -r mail@domain.tld

Now that we have set up all the credentials and authentification-related stuff, we tell mbsync what
to sync where. First up, we define the remote and local storages. You can name them whatever you
want, I chose »mail-remote« and »mail-local«. For the local storage we tell mbsync to treat it as a
default Maildir. This is the most common format and plays very well with mutt.

The last thing to be done is to provide the so called channels, basically telling mbsync "Hey, if you
find that folder on the imap server, please sync it to this local folder on my system". Each folder
gets its own channel, Master is the remote-Folder and Slave the local one. Here we use the
storage-aliases defined above. The Create/Expunge settings tell mbsync, that it should always
delete/create any emails it finds, so it will be totally in sync always. Please note, that you have to
be very explicit with the naming of the folders, I had to use the actual value of the broken-umlaut
(not UTF-8 here) name of my folder »Entw&APw-rfe« (meaning Entwürfe, which translates to
Drafts), to get this to work properly.

Finally you can create a group, that tells mbsync which items should get synced with the command
mbsync groupname

I just use one group for each email-account, syncing all its folders. But you could also define
something like: sync all inboxes or all archives etc.

For the plain sending of emails, we use msmtp. This basically works the same like setting up
mbsync, we start by creating a config file in ~/.msmtprc , that looks sth. like this:

Setting up msmtp

account mail

host mx.nchristian.net

port 587

protocol smtp

auth on

user mail@tinfoil-hat.net

from mail@tinfoil-hat.net

tls on

tls_starttls on

tls_trust_file /etc/ssl/certs/ca-certificates.crt

passwordeval "gpg2 --quiet --for-your-eyes-only --no-tty --decrypt ~/.config/neomutt/msmtp-

mail.gpg"

account private

host mx.nchristian.net

port 587

protocol smtp

Nothing much going on here, you just have to take care that you use the correct SSL-method and
port. msmtp can communicate with the. I've added the passwiwordeval command in difference to
the original Post since he used MacOS and I am using a minimal Debian, so there's a need for extra
asking for a password. The certificates-file is the same file as before.

You can test if this really is working by sending a simple email via the terminal, using this
command:

The Neomutt Configuration files are pretty much the same as under MacOS which are explained by
the Original Author https://webgefrickel.de/blog/a-modern-mutt-setup-part-two I feel the need to
backup his work, in case his Blog goes down, I also contacted the Author on case he want's it to get
taken down.

So far we covered installing everything and configuring mbsync and msmtp, for receiving and
sending emails. If you did everything correctly, you should now have a folder ~/Mail containing all
your emails. So what to do now? -Set up neomutt

Think of mutt as a text-based interface for your email-accounts and the folders therein. You can
and should customize almost every keystroke of how you want to use mutt. Have a look at the
getting started guide from the neomutt-homepage before diving deeper, especially the ideas of the
different »screens« in mutt, for example the index, pager, compose and other screens:

I try to think of those just like the different modes in Vim: you have normal, insert, visual mode
etc.—each mode is intended for a specific use case (insert text, edit text etc.) and you can
configure different keyboard-shortcuts for every mode. This is basically the same for mutt: each
screen has a different purpose (for example the »pager« is for showing email content, the
»compose«-screen is for composing messages etc. pp.) and you can configure anything for each
mode.

auth on

user @nchristian.net

from @nchristian.net

tls on

tls_starttls on

tls_trust_file /etc/ssl/certs/ca-certificates.crt

passwordeval "gpg2 --quiet --for-your-eyes-only --no-tty --decrypt ~/.config/neomutt/msmtp-

mail.gpg"

echo "Test" | msmtp -a mail youremail@domain.tld

Setting up Neomutt

https://webgefrickel.de/blog/a-modern-mutt-setup-part-two
https://neomutt.org/guide/gettingstarted

But first we start with some sane defaults for mutt: to bundle everything mutt-config-related I
created a folder called ~/.mutt with different config-files. Let's start with the muttrc-file. I gonna
split this up, and we will go into the details:

First, we set the folders and paths for stuff mutt needs. The most important thing here is the first
line, pointing mutt to the actual folder where mbsync stores all email. The certificates-file is the
same as for mbsync/msmtp as well (see above). We will get to the mailcap-file later… Next
up—some sane defaults:

The most important part here is that we tell mutt to treat our ~/Mail folder as Maildir-format (line
3). This is important, so that mutt can understand the format of the emails we have synced with
mbsync. I won't go into the details of every option here, just google for them or have a look at the
manual here: neomuttrc manual. Basically this config makes mutt behave: no beeping, sane
quitting and real deletion (not archiving) of emails.

Next we configure mutt to behave, when we are in »compose«-view, e.g. when we are writing and
sending emails:

General config
paths

set folder = ~/Mail

set header_cache = ~/.mutt/cache/headers

set message_cachedir = ~/.mutt/cache/bodies

set certificate_file = ~/dotfiles/office/certificates.crt

set mailcap_path = ~/.mutt/mailcap

set tmpdir = ~/.mutt/tmp

basic options

set wait_key = no

set mbox_type = Maildir

set timeout = 3

set mail_check = 0

set delete

set quit

set thorough_search

set mail_check_stats

unset confirmappend

unset move

unset mark_old

unset beep_new

https://neomutt.org/man/neomuttrc

I want mutt to ask me if I want to add an CC-field by default (which is something I do very often),
show me all headers and just behave nicely when I want to write an email. The important setting
here is set editor = "nvim" —because that was the whole point of me wanting to use mutt: I want
to write emails in Vim.

Moving on: let's configure how everything will be looking and what fields are shown in the
overview:

compose View Options

set envelope_from # which from?

set edit_headers # show headers when composing

set fast_reply # skip to compose when replying

set askcc # ask for CC:

set fcc_attach # save attachments with the body

set forward_format = "Fwd: %s" # format of subject when forwarding

set forward_decode # decode when forwarding

set attribution = "On %d, %n wrote:" # format of quoting header

set reply_to # reply to Reply to: field

set reverse_name # reply as whomever it was to

set include # include message in replies

set forward_quote # include message in forwards

set editor = "nvim"

set text_flowed

unset sig_dashes # no dashes before sig

unset mime_forward # forward attachments as part of body

status bar, date format, finding stuff etc.

set status_chars = " *%A"

set status_format = "[Folder: %f] [%r%m messages%?n? (%n new)?%?d? (%d to delete)?%?t? (%t

tagged)?]%>─%?p?(%p postponed)?"

set date_format = "%d.%m.%Y %H:%M"

set index_format = "[%Z] %?X?A&-? %D %-20.20F %s"

set sort = threads

set sort_aux = reverse-last-date-received

set uncollapse_jump

set sort_re

set reply_regexp = "^(([Rr][Ee]?(\[[0-9]+\])?: *)?(\^+\] *)?)*"

set quote_regexp = "^({0,4}[>|:#%]| {0,4}[a-z0-9]+[>|]+)+"

set send_charset = "utf-8:iso-8859-1:us-ascii"

set charset = "utf-8"

UTF-8 all teh things! Another important line here is the index_format: here we define what fields of
an email will be shown in the overview of an email-folder: called the index. We then configure how
many lines we want in the pager, basically a condensed overview, when an email is opened and
configure everything to prefer text-emails over HTML-emails.

Pager View Options

set pager_index_lines = 10

set pager_context = 3

set pager_stop

set menu_scroll

set tilde

unset markers

email headers and attachments

ignore *

unignore from: to: cc: bcc: date: subject:

unhdr_order *

hdr_order from: to: cc: bcc: date: subject:

alternative_order text/plain text/enriched text/html

auto_view text/html

when composing emails, use this command to get addresses from

the addressbook with khard first, and everything else from mu index

set query_command = "(khard email --parsable '%s' | sed -n '1!p'; mu cfind --format=mutt-ab

'%s')"

The sidebar
sidebar patch config

set sidebar_visible

set sidebar_short_path

set sidebar_folder_indent

set sidebar_width = 25

set sidebar_divider_char = ' | '

set sidebar_indent_string = '

set sidebar_format = "%B %* [%?N?%N / ?%S]"

Mailboxes to show in the sidebar.

mailboxes =ALL-INBOXES

mailboxes =mailbox/INBOX =viu/INBOX

The code above configures the sidebar, how wide it should be, what labels are shown etc. pp. I
have configured that I first list all of the inboxes from the different mail-accounts (under the label
ALL-INBOXES) and then I list all subfolders of the different accounts (two shown here).

The inboxes will all have the same name (INBOX), which is a bit stupid, but I have configured
different colors so I know in which inbox I am currently—more on that later.

GPG/PGP

If you use GPG, set those variables to always sign and encrypt emails if the conversation was
started as encrypted. I will not go into detail how to use GPG—that should be up to you. You of
course should update the php_sign_as-OPtion to use your GPG-fingerprint.

I've put the key-bindings and color configurations in separate files, to keep it a bit more
manageable. You could of course do this with some of the config-parts from above as well.

mailboxes ="==================="

mailboxes =mailbox

mailboxes =mailbox/archive =mailbox/sent =mailbox/drafts =mailbox/junk =mailbox/trash

mailboxes =viu

mailboxes =viu/archive =viu/sent =viu/drafts =viu/junk =viu/trash

...

GPG

set pgp_sign_as = 2F283D0D

set crypt_use_gpgme = yes

set crypt_autosign = no

set crypt_verify_sig = yes

set crypt_replysign = yes

set crypt_replyencrypt = yes

set crypt_replysignencrypted = yes

Colors and key bindings
source colors and keybindings

keeping those in one place makes it easier for my brain

source ~/.mutt/colors

source ~/.mutt/bindings

I won't get into details regarding colors, just use the file from the original authors github repository
or search for »mutt color scheme«. The basic idea is: mutt will use your terminal colors and you
just tell it what to do and how to color specific things in the different views (pager, index, when
composing emails etc.), for example:

will tell mutt to color new messages in the index-view to be blue etc. pp.

And now for the most important part and one of the mightiest features of mutt: key bindings. Good
to know: when in mutt you can always press ? to get a list of all available keyboard shortcuts in the
current screen, this helps a lot when starting out! By default mutt uses a lot of useful and sane key-
bindings, for example, when you are in the index and you have a message selected, hitting d will
delete the email, moving it to the trash-folder. I kept a lot's of the default key-bindings from mutt,
but also configured some of my own. Let's jump right into my bindings:

Those should be quite easy to grasp: I configure the index and pager views to behave like Vim: j, k,
gg, G, Ctrl+u and Ctrl+d for navigation through all emails—just as you are used to from Vim. I use
the arrow-keys to navigate in the sidebar. Moving on:

color index blue default "~N" # new messages

some sane vim-like keybindings

bind index,pager k previous-entry

bind index,pager j next-entry

bind index,pager g noop

bind index,pager \Cu half-up

bind index,pager \Cd half-down

bind pager gg top

bind index gg first-entry

bind pager G bottom

bind index G last-entry

Sidebar Navigation

bind index,pager <down> sidebar-next

bind index,pager <up> sidebar-prev

bind index,pager <right> sidebar-open

global index and pager shortcuts

bind index,pager @ compose-to-sender

bind index,pager R group-reply

bind index,pager D purge-message

bind index <tab> sync-mailbox

bind index <space> collapse-thread

The shortcuts configured in this block will do the following:

@ with an email selected, it will compose a new email to that emails sender
D (that is: Shift+d) with an email selected, it will completely delete the email
R will open Vim with a new »Reply-To-All email«
hitting Space will collapse threaded emails
hitting Tab will sync the changes from mutt to your local mailbox. This will not sync
remotely to your imap-account, this just propagates changes you did with mutt (deleting,
moving emails) to your local mail-folder.

Those are some basic key-bindings, triggering built-in mutt commands. There a shitload of internal
commands you can trigger with just some basic key-bindings, but the real magic makes use of
macros—and this is where we marry all those other little tools with mutt:

So, using those bindings hitting S will throw the currently selected message at ripmime (which
we've installed in part one) and tell it to save (thus the S) all non-textfile-attachments of the email
to my downloads-folder in my home directory.

Ctrl-b will throw the current email (pager only) at urlscan, which will parse the email for any links,
so I can easily open them in a browser.

And finally: O (as in »OMG, this works!«) will start mbsync with the configuration from part one and
remotely sync all email accounts via IMAP.

So far so good. You should by now have grasped how mutt works and how you can configure it to
your liking. I urge you to read the neomutt-introduction (see above) and just hit ? when starting
mutt to get an idea of what you can configure. If you only plan on using only one email-account
with mutt, you should get pretty far already.

If you plan on using more than one account: get yourself another coffee and read on:

Macros

Save all attachments

macro pager S "<pipe-message> ripmime -i - -d ~/Downloads && rm ~/Downloads/textfile*" "Save

all non-text attachments using ripmime"

opening urls with urlscan

macro pager \cb "<pipe-message> urlscan<Enter>" "call urlscan to extract URLs out of a

message"

Sync all email

macro index,pager O "<shell-escape>mbsync -a<enter>" "run mbsync to sync all mail"

All the key-bindings and configuration from above are global to mutt, but we still are missing some
options to make mutt work correctly with our local email folders and mbsync. If you only want to
use one account you should be fine by just setting the options for mbox, trash, from, sendmail
etc.—but if you are using more than one account, you have to use something called folder-hooks:

The idea is simple: we change/add configuration for mutt, depending which mail-folder we are
currently managing. This way we can use different values for different email-accounts. We need
this, because we want to create key-bindings to move emails to corresponding archive-folders, to
set different from-email-addresses etc. Have a look at the bottom of the muttrc-file:

by default, use privat

when changing into other mailboxes, use different adresses etc.

We set a default and tell mutt to use the account mail and it's configuration (first 4 lines). And then
we provide the folder-hooks—this tells mutt: »Hey, if you are doing anything in mail and its
subfolders, please use the mail-account-config. If you are doing anything in private and its
subfolders, please use the private-account-config« etc. pp.

And with that we are almost done for part 2, let's have a look at the account-specific configs, for
example the mail-Config:

Account-specific configuration with
folder-hooks

set realname = "First Lastname" set spoolfile = "+private/INBOX" source

~/.config/neomutt/accounts/private

folder-hook private/* source ~/.config/neomutt/accounts/private folder-hook mail/* source

~/.config/neomutt/accounts/mail

set sendmail="/usr/bin/msmtp" # Use msmtp rather than sendmail

set from = "mail@tinfoil-hat.net"

set sendmail = "/usr/bin/msmtp -a mail"

Set folders

set spoolfile = "+mail/INBOX"

set postponed = "+mail/drafts"

set record = "+mail/sent"

set trash = "+mail/trash"

OK, let's break this down line by line: set from tells mutt which email to use as the from-email—this
should match the one from the mbsync-config from part one. set sendmail tells mutt what program
it should use to send emails, and in this case: we use msmtp and tell msmtp to use the config for
the mailbox-account. This is where all the tools from part one are married with mutt. We then tell
mutt which folders to use for what (inbox to trash), set additional email-addresses we want to use
for this account and use a custom signature with set signature.

color status cyan default sets the color of the status-bar, and by setting a different color in each
account-config you can visually differentiate your email-accounts. Nice.

After having set everything mutt needs to read folders and send emails correctly, I then configure
some more macros, that are specific to the currently active account:

o will start mbsync to sync all folders via IMAP (for the mailbox-account only)
J will move a selected email to the spam-folder in the mailbox-account
A will archive an email in the mailbox-account (move it to mailbox/archive)
I will move an email back to the inbox (e.g. when browsing the archive or sth.)

Those macros and settings will be different for every account-config-file have a look here, but in
the end do the same actions—but account-specific.

So with folder-hooks I can just memorize one keyboard-shortcut (J for Junk), but it will work in every
account and I don't have to care about setting the correct from-email manually. When sending an
email from my viu-inbox, it will set the correct option with the folder-hook automatically.

custom signaure

set signature = ~/.mutt/signatures/tinfoil

color status cyan default

macro index o "<shell-escape>mbsync mailbox<enter>" "run mbsync to sync mail for this account"

macro index,pager J \

 "<enter-command>set my_old_resolve=\$resolve noresolve<enter>\

 <tag-prefix><clear-flag>n<enter-command>set resolve=\$my_old_resolve<enter>\

 <save-message>+mail/junk<enter>" \

 "mark as read and move to junk folder"

macro index,pager I \

 "<save-message>+mail/INBOX<enter>" \

 "move message to the inbox"

https://github.com/webgefrickel/dotfiles/tree/master/office/mutt/accounts

Phew. Still here? Still following? Awesome—we are halfway there. Step 4: Using mutt

So let's recap: in part one we configured msmtp and mbsync to work with our email-accounts. In
part two we learned what mutt is for, and how we can configure it to our liking. With key-bindings,
macros and folder hooks we just managed to marry mutt with everything from part one, so we now
should be able to send and receive emails from within mutt!

Instead of trying to describe how my workflow looks like I will just show it to you, brace for some
video-content! (This is the first time I am ever doing this, so please bare with my awkardness.
Thanks.)

https://webgefrickel.de/content/3-blog/21-a-modern-mutt-setup-part-two/using-mutt.mp4

https://neomutt.org/man/neomuttrc

https://neomutt.org/guide/gettingstarted

https://github.com/webgefrickel/dotfiles/blob/master/office/

https://wiki.archlinux.org/index.php/Msmtp

Changes include the adoption to a Debian based Operating System and the Configuration of my
own E-Mail Server

Other Sources

https://webgefrickel.de/content/3-blog/21-a-modern-mutt-setup-part-two/using-mutt.mp4
https://neomutt.org/man/neomuttrc
https://neomutt.org/guide/gettingstarted
https://github.com/webgefrickel/dotfiles/blob/master/office/
https://wiki.archlinux.org/index.php/Msmtp

