
Before we begin, let's install some necessary packages:

Enable required services sudo systemctl enable --now libvirtd

You should add your user to libvirt group (many times it's automatically done)

Restart your machine and boot into BIOS. Enable a feature called IOMMU. You'll also need to
enable CPU virtualization. For Intel processors, look for something called VT-d. For AMD, look for
something called AMD-Vi. My motherboard is unique so I had to enable a feature called SVM
Mode. Save any changes and restart the machine.

Once you've booted into the host, make sure that IOMMU is enabled: dmesg | grep IOMMU

Also check that CPU virtualization is enabled:

For Intel: dmesg | grep VT-d
For AMD: dmesg | grep AMD-Vi

Now you're going to need to pass the hardware-enabled IOMMU functionality into the kernel as a
kernel parameter. For our purposes, it makes the most sense to enable this feature at boot-time.
Depending on your boot-loader (i.e. grub, systemd, rEFInd), you'll have to modify a specific
configuration file. Since my machine uses systemd and these configuration files are often
overwritten on updates, I will be using a tool called kernelstub:

For Intel: sudo kernelstub --add-options "intel_iommu=on"
For AMD: sudo kernelstub --add-options "amd_iommu=on"

Similarly, if your system is configured with GRUB2, you can achieve the same result by editing the
/etc/default/grub file with sudo permissions and including the kernel parameter as follows:

For Intel: GRUB_CMDLINE_LINUX_DEFAULT="quiet splash intel_iommu=on"
For AMD: GRUB_CMDLINE_LINUX_DEFAULT="quiet splash amd_iommu=on"

Edit /etc/default/grub

Part 1: Prerequisites

sudo apt install libvirt-daemon-system libvirt-clients qemu-kvm qemu-utils virt-manager ovmf

usermod -aG kvm,input,libvirt <username>

GRUB_CMDLINE_LINUX_DEFAULT="quiet splash intel_iommu=on"

or for AMD

Next, we need to update the kernel command line to configure vfio-pci to consume each
passthrough device to prevent it from being used by the hypervisor. If using GRUB, add another
argument to GRUB_CMDLINE_LINUX_DEFAULT in /etc/default/grub in the following format
(where PLACEHOLDER should be replaced with a comma-separated list of hardware IDs for your
passthrough devices):

Once you modify this variable, it should look similar to the following example:

Finally, run the following commands (in the listed order) and reboot the hypervisor yet again:

After the hypervisor reboots, check that each required device was consumed by the vfio-pci kernel
module. You should see vfio-pci on the line starting with “Kernel driver in use:” for each
passthrough device:

GRUB_CMDLINE_LINUX_DEFAULT="quiet splash amd_iommu=on"

2. Creating a stub for the
GPU

vfio_pci.ids=PLACEHOLDER

GRUB_CMDLINE_LINUX_DEFAULT="quiet splash intel_iommu=on vfio_pci.ids=10de:1c03,10de:10f1"

update-initramfs -u

update-grub

03:00.0 VGA compatible controller [0300]: Advanced Micro Devices, Inc. [AMD/ATI] Navi 23 [Radeon RX
6600/6600 XT/6600M] [1002:73ff] (rev c7)
	Subsystem: XFX Limited Navi 23 [Radeon RX 6600/6600 XT/6600M] [1eae:6505]
	Kernel driver in use: vfio-pci
	Kernel modules: amdgpu
03:00.1 Audio device [0403]: Advanced Micro Devices, Inc. [AMD/ATI] Navi 21 HDMI Audio [Radeon RX
6800/6800 XT / 6900 XT] [1002:ab28]
	Subsystem: Advanced Micro Devices, Inc. [AMD/ATI] Navi 21 HDMI Audio [Radeon RX 6800/6800 XT / 6900 XT]

Before you can image the GPU ROM, you need to make sure that you’ve successfully completed
the prior steps to blacklist the GPU and that you’ve configured your motherboard to use another
graphics device as the primary video output. This is important because the GPU needs to be
uninitialized when it is imaged or the ROM file may be garbled from previous initializations.

For some graphics cards or other PCI-e devices, this step may be unnecessary. Some GPUs can
operate just fine without mapping a static ROM file; the virtual machine can just directly access the
device ROM. Your results may vary, though. The primary purpose of this step is to ensure that
successive virtual machine reboots won’t require the hypervisor to be rebooted to reset the GPU’s
ROM to an uninitialized state.

First, make sure that your hypervisor has been freshly rebooted so that your GPU’s ROM is
uninitialized. Next, run the following commands (replacing the example BDF identifier with your
device’s BDF identifier) to obtain an image of the GPU ROM:

Note: The process of extracting your GPU’s ROM only needs to be done for the primary function of
your device, i.e. the “graphics” portion of the device.

The GPU ROM is now available at /usr/share/qemu/gpu-YYYYMMDDTHHMMSS.rom for use by libvirt
and QEMU. You can name this file whatever you want for your own convenience.

[1002:ab28]
	Kernel driver in use: vfio-pci
	Kernel modules: snd_hda_intel

3. Imaging the GPU ROM

export PCIE_BDF_IDENT='01:00.0'
echo 1 > /sys/bus/pci/devices/0000\:"${PCIE_BDF_IDENT}"/rom
cat /sys/bus/pci/devices/0000\:"${PCIE_BDF_IDENT}"/rom > \
 /usr/share/qemu/gpu-"$(date +%Y%m%dT%H%m%S)".rom
$ echo 0 > /sys/bus/pci/devices/0000\:"${PCIE_BDF_IDENT}"/rom

4. Preparing the Virtual
Machine

Now that the hypervisor is prepared for GPU passthrough, we need to configure the Windows® 10
virtual machine so that the GPU’s driver is unable to detect the virtualization environment. For the
purposes of this tutorial, we’ll be using virsh to manually edit the virtual machine configuration. All
of these changes will remain intact, even if you use Virtual Machine Manager.

First, we must ensure that the virtual machine’s CPU model is set to host-passthrough . It is very
important that you understand the difference between the “Copy host CPU
configuration” checkbox and the host-passthrough CPU model: The former picks a similar virtual
CPU that simply covers the feature set of the host CPU, where the latter configures QEMU’s virtual
CPU to directly masquerade as the host’s CPU model.

The below figure containing screenshots of Task Manager in the guest operating system
demonstrates the difference between the two configurations:

Run virsh edit <machine> to edit the configuration of your virtual machine (where <machine> is the
name of your virtual machine’s libvirt profile). Find the <cpu> node in the XML tree and edit the
value of its mode attribute so that it looks similar to the following line.

Note: You may save the configuration and reboot after every modification to observe how it
modifies the virtualization environment from your guest operating system’s perspective.

The first step to hide the virtualization environment is to disable the machine specific registers
relating to KVM paravirtualization. Add the following code inside the <features> node of your virtual

Configuring the Virtual CPU

<cpu mode='host-passthrough' check='partial'>

Hiding the Virtualization
Environment

https://wiki.tinfoil-hat.net/uploads/images/gallery/2023-03/cpu-model-comparison.png

machine’s configuration using the virsh edit <machine> command.

Next, select one of the following methods to try to defeat virtualization detection from the guest
operating system. There are two methods that can be used to hide the virtualization environment
in Windows® 10:

Method A is the preferred method since it makes the virtualization environment harder to
detect in the guest operating system and provides great performance if your CPU
supports constant_tsc .
Method B is an alternative that uses Hyper-V enlightenments for improved performance
on systems that don’t support constant_tsc , but it may be easier to defeat via driver
updates.

Note: Each method is mutually exclusive since Method B requires the hypervisor CPUID bit to be
set so that Windows® will recognize and use the Hyper-V clock.

Open your virtual machine’s configuration for editing again by running virsh edit and pick one of
the following methods to follow. It is recommended to reboot and perform benchmarks after each
modification (where permitted by applicable end-user license agreements) so that you may
determine which is the best performing configuration for your system.

Open your virtual machine’s configuration for editing again by running virsh edit <machine> and pick
one of the following methods to follow. It is recommended to reboot and perform benchmarks after
each modification (where permitted by applicable end-user license agreements) so that you may
determine which is the best performing configuration for your system.

Inside the <cpu> block of your virtual machine’s configuration, add the following line to disable the
hypervisor CPUID bit.

This line should completely hide the virtualization environment from the perspective of the guest
operating system, thus causing any virtualization check to pass.

<kvm>
 <hidden state='on'/>
</kvm>

Method A: Disabling the Hypervisor
CPUID Bit

<feature policy='disable' name='hypervisor'/>

Inside the <features> node of your virtual machine’s configuration, make sure that you have a
<hyperv> node that looks similar to the below example. You may use this example verbatim in
your configuration.

The <hyperv> node’s contents will ensure that Hyper-V enlightenments are available to the guest
operating system for higher performance. The vendor_id tag overrides the default Hyper-V vendor
ID to something unexpected by the graphics drivers, causing them to successfully pass the
virtualization check.

Next, inside the <clock> node of your virtual machine’s configuration, add the following line to
enable the Hyper-V clock.

Method B: Adjusting the Hyper-V
Enlightenments

<hyperv>
 <relaxed state='on'/>
 <vapic state='on'/>
 <spinlocks state='on' retries='8191'/>
 <vendor_id state='on' value='ahb6Wah2geeb'/>
</hyperv>

 <timer name='hypervclock' present='yes'/>

TPM

https://wiki.tinfoil-hat.net/uploads/images/gallery/2023-03/bildschirmfoto-vom-2023-03-18-19-15-33.png

If you do not have a spare mouse or keyboard to dedicate to your guest, and you do not want to
suffer from the video overhead of Spice, you can setup evdev to share them between your Linux
host and your virtual machine.

Note: By default, press both left and right Ctrl keys at the same time to swap control between the
host and the guest. You can change this hotkeys. You need to set grabToggle variable to one of
available combination Ctrl+Ctrl, Alt+Alt, Shift+Shift, Meta+Meta, ScrollLock or Ctrl+ScrollLock for
your keyboard. More information:
https://github.com/libvirt/libvirt/blob/master/docs/formatdomain.rst#input-devices

First, find your keyboard and mouse devices in /dev/input/by-id/. Only devices with event in their
name are valid. You may find multiple devices associated to your mouse or keyboard, so try cat
/dev/input/by-id/device_id and either hit some keys on the keyboard or wiggle your mouse to see if
input comes through, if so you have got the right device. Now add those devices to your
configuration:

Replace MOUSE_NAME and KEYBOARD_NAME with your device path. Now you can startup the guest
OS and test swapping control of your mouse and keyboard between the host and guest by pressing
both the left and right control keys at the same time.

You may also consider switching from PS/2 to Virtio inputs in your configurations. Add these two
devices:

Passing keyboard/mouse via Evdev

$ virsh edit vmname
...
 <devices>
 ...
 <input type='evdev'>
 <source dev='/dev/input/by-id/MOUSE_NAME'/>
 </input>
 <input type='evdev'>
 <source dev='/dev/input/by-id/KEYBOARD_NAME' grab='all' repeat='on' grabToggle='ctrl-ctrl'/>
 </input>
 ...
 </devices>

$ virsh edit vmname
...
<input type='mouse' bus='virtio'/>
<input type='keyboard' bus='virtio'/>

The virtio input devices will not actually be used until the guest drivers are installed. QEMU will
continue to send key events to the PS2 devices until it detects the virtio input driver initialization.
Note that the PS2 devices cannot be removed as they are an internal function of the emulated
Q35/440FX chipsets.

https://wiki.archlinux.org/title/PCI_passthrough_via_OVMF
https://clayfreeman.github.io/gpu-passthrough/
https://github.com/bryansteiner/gpu-passthrough-tutorial/
https://github.com/vanities/GPU-Passthrough-Arch-Linux-to-Windows10
https://github.com/martinopiaggi/Single-GPU-Passthrough-for-Dummies

...

Sources:

Revision #5
Created 18 March 2023 16:30:41 by tinfoil-hat
Updated 18 March 2023 20:43:29 by tinfoil-hat

https://wiki.archlinux.org/title/PCI_passthrough_via_OVMF
https://clayfreeman.github.io/gpu-passthrough/
https://github.com/bryansteiner/gpu-passthrough-tutorial/
https://github.com/vanities/GPU-Passthrough-Arch-Linux-to-Windows10
https://github.com/martinopiaggi/Single-GPU-Passthrough-for-Dummies

