
Skip Twitters Ratelimiting

Nitter server - Pass
Rate Limiting

The current design of Nitter, along with its methodology for accessing the Twitter service,
necessitates heightened vigilance on the part of instance operators to manage unwarranted access
by web scraping bots. This guide is intended to provide operators with essential information to
effectively mitigate unauthorized web scraping bot traffic.

Before proceeding with the rate-limiting setup, ensure that you have:

1. A functional Nitter installation located at /opt/nitter .
2. Nginx as your web server, with the server block as outlined in Nginx Configuration. In this

guide, we refer to this server block as 'nitter.nginx.'

Navigate to /etc/nginx and create two necessary files with the following content:

shared_cache.conf

shared_static.conf

Skip Twitters Ratelimiting
Mitigating Unauthorized Web
Scraping Bot Traffic

Prerequisites

Rate Limiting Configuration

proxy_buffers 64 16k;
proxy_buffer_size 4k;
expires 90d;
access_log off;
proxy_pass http://127.0.0.1:8080;

https://github.com/zedeus/nitter/wiki/Nginx

These files ensure that normal usage, such as serving images, videos, and site data, does not
trigger rate limiting. Logging for these locations is disabled to prevent entries in access or error
logs.

Next, add the rate-limiting rules within the nginx.conf file, located within the http block:

nginx.conf

These settings limit users to one request per second and 45 requests per minute, a natural
browsing rate for the site.

Now, in your 'nitter.nginx' server block:

nitter.nginx

expires 90d;
access_log off;
root /opt/nitter/public

http {

 limit_req_zone $binary_remote_addr zone=nitter.tld_sec:10m rate=1r/s;
 limit_req_zone $binary_remote_addr zone=nitter.tld_min:10m rate=45r/m;
}

server {
 location /pic/ { include shared_cache.conf; }
 location /video/ { include shared_cache.conf; }

 location /css/ { include shared_static.conf; }
 location /js/ { include shared_static.conf; }
 location /fonts/ { include shared_static.conf; }
 location = /apple-touch-icon.png { include shared_static.conf; }
 location = /apple-touch-icon-precomposed.png { include shared_static.conf; }
 location = /android-chrome-192x192.png { include shared_static.conf; }
 location = /favicon-32x32.png { include shared_static.conf; }
 location = /favicon-16x16.png { include shared_static.conf; }
 location = /favicon.ico { include shared_static.conf; }
 location = /logo.png { include shared_static.conf; }
 location = /site.webmanifest { include shared_static.conf; }
}

nitter.nginx

The 'burst' parameter allows for temporary bursts of traffic while maintaining the overall rate limit,
ensuring a smoother user experience while preventing server overload and misuse.

Reload Nginx configuration files:

Nginx will now rate limit IP for excessive usage.

To implement rate limiting and address repeat offenders, a functional install of Fail2ban
(https://github.com/fail2ban/fail2ban) is required. Typically, Fail2ban configuration files are located
at /etc/fail2ban. Make a copy of jail.conf named jail.local, as Fail2ban will prioritize jail.local by
default when both are present:

Within jail.local, ensure that bantime.increment is uncommented and set to true:

Additionally, enable the rate-limiting block in jail.local by setting 'enabled' to true:

Restart Fail2ban:

To verify that the jail is running:

 location / {
 proxy_pass http://localhost:8080;
 limit_req zone=nitter.tld_sec burst=3 nodelay;
 limit_req zone=nitter.tld_min burst=4;
 }

nginx -s reload

Fail2ban

cp /etc/fail2ban/jail.conf /etc/fail2ban/jail.local

bantime.increment = true

[nginx-limit-req]
enabled = true
port = http,https
logpath = %(nginx_error_log)s

systemctl restart fail2ban

You'll receive a summary of failures triggered by the filter and the number of active actions.

Fail2ban will now enforce rate limits, with incremental punishments for repeat infractions when
bans expire.

paste [] inside it

fail2ban-client status nginx-limit-req

Status for the jail: nginx-limit-req
|- Filter
| |- Currently failed:	0
| |- Total failed:	0
| `- File list:	%(nginx_error_log)s
`- Actions
 |- Currently banned:	0
 |- Total banned:	0
 `- Banned IP list:

Switch to guest_accounts,
compile it as normal

git clone https://github.com/zedeus/nitter
cd nitter
git branch guest_accounts
nimble build -d:release
nimble scss
nimble md

touch guest_accounts.jsonl
vim guest_accounts.jsonl

https://twitterminator.x86-64-unknown-linux-gnu.zip/

Finally apply for guest
accounts here:

Create cronjob
0 */4 * * * curl ...guest_accounts.jsonl

https://twitterminator.x86-64-unknown-linux-gnu.zip/

