
Sed

Sed

Quite often when working with text files you’ll need to find and replace strings of text in one or
more files.

sed is a stream editor. It can perform basic text manipulation on files and input streams such as
pipelines. With sed you can search, find and replace, insert, and delete words and lines. It supports
basic and extended regular expressions that allow you to match complex patterns.

In this article, we’ll talk about how to find and replace strings with sed. We’ll also show you how to
perform a recursive search and replace.

There are several versions of sed, with some functional differences between them. macOS uses the
BSD version and most Linux distributions come with GNU sed pre-installed by default. We’ll use the
GNU version.

The general form of searching and replacing text using sed takes the following form:

-i - By default sed writes its output to the standard output. This option tells sed to edit files
in place. If an extension is supplied (ex -i.bak) a backup of the original file will be created.
S - The substitute command, probably the most used command in sed.
/ / / - Delimiter character. It can be any character but usually the slash (/) character is
used.
SEARCH_REGEX - Normal string or a regular expression to search for.
REPLACEMENT - The replacement string.
g - Global replacement flag. By default, sed reads the file line by line and changes only
the first occurrence of the - SEARCH_REGEX on a line. When the replacement flag is
provided, all occurrences will be replaced.
INPUTFILE - The name of the file on which you want to run the command.

It is a good practice to put quotes around the argument so the shell meta-characters won’t expand.
Let’s see examples of how to use the sed command to search and replace text in files with some of

Sed

Find and Replace String with
sed

sed -i 's/SEARCH_REGEX/REPLACEMENT/g' INPUTFILE

its most commonly used options and flags.

For demonstration purposes, we will be using the following file:

If you omit the g flag only the first instance of the search string in each line will be replaced:

With the global replacement flag sed replaces all occurrences of the search pattern:

As you might have noticed, in the previous example the substring foo inside the foobar string is
also replaced. If this is not the wanted behavior, use the word-boundery expression (\b) at both
ends of the search string. This ensures the partial words are not matched.

To make the pattern match case insensitive, use the I flag. In the example below we are using both
the g and I flags:

123 Foo foo foo
foo /bin/bash Ubuntu foobar 456

sed -i 's/foo/linux/' file.txt

output
123 Foo linux foo
linux /bin/bash Ubuntu foobar 456

sed -i 's/foo/linux/g' file.txt

output
123 Foo linux linux
linux /bin/bash Ubuntu linuxbar 456

sed -i 's/\bfoo\b/linux/g' file.txt

output
123 Foo linux linux
linux /bin/bash Ubuntu foobar 456

sed -i 's/foo/linux/gI' file.txt

123 linux linux linux
linux /bin/bash Ubuntu linuxbar 456

If you want to find and replace a string that contains the delimiter character (/) you’ll need to use
the backslash () to escape the slash. For example to replace /bin/bash with /usr/bin/zsh you would
use

The easier and much more readable option is to use another delimiter character. Most people use
the vertical bar (|) or colon (:) but you can use any other character:

You can also use regular expressions. For example to search all 3 digit numbers and replace them
with the string number you would use:

Another useful feature of sed is that you can use the ampersand character & which corresponds
to the matched pattern. The character can be used multiple times.

For example, if you want to add curly braces {} around each 3 digit number, type:

Last but not least, it is always a good idea to make a backup when editing a file with sed . To do
that just provide an extension to the -i option. For example, to edit the file.txt and save the
original file as file.txt.bak you would use:

If you want to make sure that the backup is created list the files with the ls command:

sed -i 's/\/bin\/bash/\/usr\/bin\/zsh/g' file.txt

sed -i 's|/bin/bash|/usr/bin/zsh|g' file.txt

output
123 Foo foo foo
foo /usr/bin/zsh Ubuntu foobar 456

sed -i 's/\b[0-9]\{3\}\b/number/g' file.txt

output
number Foo foo foo
foo /bin/bash demo foobar number

sed -i 's/\b[0-9]\{3\}\b/{&}/g' file.txt

output
{123} Foo foo foo
foo /bin/bash demo foobar {456}

sed -i.bak 's/foo/linux/g' file.txt

Sometimes you want to recursively search directories for files containing a string and replace the
string in all files. This can be done by using commands such as find or grep to recursively find files
in the directory and piping the file names to sed.

The following command will recursively search for files in the current working directory and pass
the file names to sed.

To avoid issues with files containing space in their names use the -print0 option which tells find to
print the file name, followed by a null character and pipe the output to sed using xargs -0 :

If you want to search and replace text only on files with specific extension you would use:

ls

output
file.txt file.txt.bak

Recursive Find and Replace

find . -type f -exec sed -i 's/foo/bar/g' {} +

find . -type f -print0 | xargs -0 sed -i 's/foo/bar/g'

find . -type f -name "*.md" -print0 | xargs -0 sed -i 's/foo/bar/g'

