
SSH
Creating SSH-key
SSH Tunnel
Using `dd` and `ssh` to copy a disk image over a network

Creating SSH-key
To generate an SSH-key, enter the following command on the "home" terminal:

-t stands for type and this determines the type of key 2. -b stands for bits. This can be used to
determine the length of the key.

Saving the SSH-key

Here you can select a different location and an alternative name for the file containing the private
key. Just press "Enter" to accept the given suggestion.

Optionally, a password for the public key can be assigned here. This is always queried when the
public key file is used to establish a connection.

Enter the same password again. If the field is empty, simply press "Enter"

Copying the SSH-key on your
server
ssh-copy-id youruser@ip-address

Copy the public key to the desired server. For this the password of the server is necessary. NOTE:
this will only work if the public key lays on the default location

ssh-keygen -t rsa -b 4096

Enter file in which to save the key (/home/me/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Login without password-
authentication
Now, if all of the steps are done right you´ll be able to login over ssh without your password.
Simply connect over ssh (if you choose a password in the key, use the keys password

ssh youruser@ip-address

SSH Tunnel
tunnel with ssh (local port 3337 -> remote
host's 127.0.0.1 on port 6379)

SSH Tunnel - Advanced
SSH-Tunnel Syntax:

the option -L creates a local, and the Option -R a remote Port Forwarding. The encrypted tunnel is
created always between Client and Server. The connection from "tunnel end" to host happens
unencrypted, this is why you set it in most cases to localhost. Therefore localhost should not be
confused with the local Computer. You have to see this localhost from server perspective, so the
Server itself.

Die Option -L bzw. -R sets the direction. if you choose -L the direction is from your own Computer to
the remote one, if you choose -R in the opposite direction. (you can think of it as normaL
backwaRds.)

The first Port Argument is the entryport in the connection. You have to keep in mind, that the
opening of a "privileged" port, so under 1024, only is allowed by root, so you should choose a
higher one.

With the optional parameter bind_address you can seon which specific network address the
connection should use, whereas localhost is default. A * or an empty bind_address-argument before
the colon means, that the forwarding is on all Interfaces / Network Adresses. Probably whis will only
work with IPv4 Adresses because the IPv6-Adresses aren't capable of beeing forwarded, Therefore
you should use the Argument -4 .

The second port-parameter tells which Port tells, which port from host the tunneling should go on

ssh -L 3337:127.0.0.1:6379 root@domain.tld -N

ssh -L [bind_address:]port:host:port user@server
ssh -R [bind_address:]port:host:port user@server

Another useful argument is the option -N, which refuses a terminal-session, if you only want to use
the Portforwarding to the remote systeme.

Examples
Forwarding fro Port 8000 on the local system to the Webserver (port 80) on Server:

Same, but it isn't just a connection from local Host forwarded, but from all Interfaces (hint: you
need to set the option - GatewayPorts ; use this option with caution!):

Reverse direction. You allow Users on the Server, via localhost:3306 to connect to the clients
MySQL-Server:

ssh -L 8000:localhost:80 server -N &
netstat -anp --inet | egrep '(^Proto|8000)'

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.0.0.1:8000 0.0.0.0:* LISTEN 10843/ssh

fg

ssh -L 8000:localhost:80 server -N
[Strg-C]
Killed by signal 2.

ssh -L *:8000:localhost:80 server -N -4 &
netstat -anp --inet | egrep '(^Proto|8000)'

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 0.0.0.0:8000 0.0.0.0:* LISTEN 10906/ssh

ssh -R 3306:localhost:3306 server

Last login: Sat Mar 11 23:24:20 2006 from 192.168.4.56
netstat -an --inet | egrep '(^Proto|3306)'
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN
exit
logout
Connection to server closed.

Here you can see an example of a double SSH Reverse tunnel:

needsupportpc$ ssh -R 22:localhost:2222 user@vps
helpdeskpc$ ssh user@vps -t ssh needsupportpcuser@localhost:2222

Using `dd` and `ssh` to copy
a disk image over a network

Another Way
On the Sourcemachine

And on the Destination Machine

dd if=/dev/sdX | ssh user@remotehost "dd of=ops-tools.img"

 tar zcf - /* | nc $IP 4444

 nc -lp 4444 > backup.tar.gz

